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In-stream rock structures
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In-stream structure design

Stream instability, degradation, aggradation, and local scour account
for 60% of US highway bridge failures (Lagasse et al. 1995)
— Riverbank failure and erosion put extra sediment into streams, which
(Zzgggi)butes roughly $16 billion annually in damages (USEPA 1994; ARS
Over $1 billion spent every year since 1990 to improve river training,
protect banks from erosion, and enhance aquatic habitat quality
(Bernhardt et al. 2005).

Despite the large investment, it is estimated that at least 50% of
stream restoration projects fail (O’Neil and Fitch 1992).

Overa”, the emerglng COnsenSUS (e.g., House 1996; Roni et al. 2002; Moerke and Lamberti 2004; Bernhardt et al.
2005) 1S that:
— results of specific installations are often mixed and highly site-specific

— existing research and monitoring practices for stream-restoration and river
training strategies are inadequate

— there is a strong need for a comprehensive evaluation of most river
training and stream restoration methods



Three-dimensional flow patterns around
In-stream structures

« Shingle Creek, Brooklyn Park, MN i
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« Simulations by Fotis Sotiropoulos ad Christian Escauriaza using the SAFL Virtual
StreamLab (VSL) numerical model of flow around boulders and rectangular vanes




National Cooperative Highway Research Program (NCHRP) Project 24-33:

Development of Design Guidelines for In-stream Flow Control Structures
Pl: Fotis Sotiropoulos, SAFL; co-PI's: Anne Lightbody, SAFL; Panos Diplas, Virginia Tech
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NCHRP practitioner survey (spring '09)
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NCHRP practitioner survey

e Summary info

— 75% agreed structures (other than constructed riffles) halted further bank
and bed scour

— agreement on the need for quantitative predictive design guidelines

» Detailed project info
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« Sitill collecting information — especially on UNSUCCESSFUL projects



“To the lab and beyond!”

Empire Township, MN
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ot t eamLab >l |

— Quantify processes from microscopic to basm
scales

— Conduct field-scale experiments
— Impose and repeat hydrographs

— Provide verification for models and measurement
techniques

— Enable highly visible formal and informal
education

— Allow experimental study of processes influenced
by organisms dependant on natural precipitation
and sunlight
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Water quality
comparison

Battle Browns Credit Eagle Fish Nine Mile Silver Outdoor
Units Site Creek Creek River Creek Creek Creek Creek StreamLab

Total
phosphorus mg/L Mean 0.21 0.27 0.26 0.08 0.18 0.19 0.17 0.15

NO,-N mg/L Mean 0.6 0.67 092 023 091 0.84 0.77 0.56

TSS mg/L Mean 50 78 50 20 39 105 74 29.3

Turbidity NTU Mean 9 12 13 6 13 19 11 8.5
Mean 9.3 9.8 12.4 8.7 2.9 18.4 1.2 -
Discharge cfs Base 8 7 7 8 2 5 0.5 1.5
Max 45 33 85 13 17 130 6.5 55

Data from Metropolitan Council Environmental Services
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Trichoptera Hydropsychidae
(Common Net-spinner
Caddisflies)
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Other
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On average, 3/cm? in riffles = 500,000 in the stream



Field-scale laboratory measurements
In the SAFL Outdoor StreamLab

Objectives:

1. effect of an array of structures on structure
stability & bank erosion

2. Installation and monitoring

3. data for validating the VSL numerical model
around structure arrays at different flow rates



NCHRP SAFL Outdoor StreamLab measurements
(summer '09 &'10)
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Rock vane added

o July 31, 2009, rock vane installed using recommended construction

teCh n |q ues (Maryland Department of the Environment, 2000; Lagasse et al., 2001; Rosgen, 2001; and Doll et al., 2003)
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 Measurements repeated before and after vane installation



Water & sediment discharge

Vane installed
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2009 OSL measurements

Base flow (44 L/s) Bankfull flow (280 L/s) Overbank flow (1200 L/s)

No structure

Single rock vane &%




2009 OSL measurements

Overbank flow (1200 L/s)



Outdoor StreamLab high-resolution
bathymetry measurements

* Mobile computer-controlled data acquisition (DAQ) system

* Position and control instruments to obtain topography, water surface
elevation, velocity, temperature, dissolved oxygen, nitrate, etc.

Total station to
determine
carriage position

Fixed benchmarks
for high-precision
change detection




OSL bathymetry

cm-scale horizontal resolution; mm-scale vertical
Continuous coverage of bed, banks, and water surface
Bed grain size for roughness & sediment transport estimates
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Effect of adding single rock vane

Before After

Change

Sediment filled in
behind structure

Downstream scour hole

\Sedlment deposited
near bank
‘ F downstream

Point bar shrunk
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Sediment transport via bedforms
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Bed form migration

Prior to
structure
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Sediment transport calculations

« Sediment topography integrated to obtain sediment flux

Aa
t
W

e Following Jerolmack and Mohrig (2005), the sediment
flux per unit width in the direction of bedform motion:

Aa
qs — (1_1)_

»\At

porosity; assumed constant: A = 0.35



Velocity measurements

e 3-D 5-minute velocity records using
acoustic Doppler velocimetry at 12
Cross sections
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Depth-averaged velocity profiles

No structure

With rock vane

(b)

7 {m above sea level



SAFL Virtual StreamLab

State-of-the-art computational fluid dynamics (CFD) model developed by Fotis
Sotiropoulos that is capable of simulating real-life hydraulic engineering flows using
advanced numerical techniques and turbulence models

Integrates a 2-D depth-averaged module, a 3-D steady module, and a full 3-D
unsteady module with a highly advanced turbulence model capable of resolving
unsteady vortices at full-scale conditions

Can simulate sediment transport and scour past complex hydraulic structures using a
physics-based approach




Virtual StreamLab simulations

Surface tracers Modeled surface velocity




Virtual StreamLab simulations

* Preliminary LES simulations from Fotis Sotiropoulos and Seokkoo
Kang (Re = 5000)

No structures With structures
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National Cooperative Highway Research Program (NCHRP) Project 24-33:

Development of Design Guidelines for In-stream Flow Control Structures
Pl Fotis Sotiropoulos, SAFL; co-PI's: Anne Lightbody, SAFL/UNH; Panos Diplas, Virginia Tech

Previous practitioner
experience

Large-scale physical
modeling

Small-scale
physical modeling
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Guidelines for
installing, monitoring,
and maintaining




Developing guidelines with the Virtual StreamLab

e ODbjectives:

— Validate hydrodynamic & deformable bed model components
using indoor laboratory flume, OSL, and field measurements

— Use the VSL to extend the detailed laboratory and field
measurements to an even wider range of channel configurations
and flow rates

— Determine, for a particular stream, what site-specific stream
properties (e.g., curvature, slope, bed and bank material, channel
morphology, etc.) must be measured, what structure or
combination of structures is most appropriate, how it should be
installed, how it should be monitored and maintained, and at what
flow rate it will likely fail

— Develop and test new structure types



Tether

Assessing fish
use of structures



Simultaneous fish position & flow
velocity measurements
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