

Presentation to the

Upper Midwest Stream Restoration Symposium

Habitat Improvement on Valley Creek

Tom MacDonald, Barr Engineering Co. Feb. 22, 2010

Topics

- Background
- Options Study
- Design Process
- Construction
- Post-Construction Challenges
- Monitoring
- Lessons Learned

Valley Creek

- One of 13 trout streams within the Twin Cities metropolitan area
- One of few that has a naturally reproducing population of native brook trout and brook lamprey
- Also sustains large populations of non-native brown and rainbow trout
- Believed to be in the top 10% of trout streams in the world in terms of trout production (based on personal communication with Tom Waters and Ray Newman)

Valley Creek

- Flows into the St. Croix River, a federally designated Wild & Scenic River
- Lake St. Croix at Valley Creek's mouth is listed as impaired by the MPCA
- Estimated 1,400 tons of sediment per year enter
 Valley Creek from its watershed

St. Croix River.
Photo: Nile Fellows

Valley Creek Repair & Rehabilitation Program

- EPA 319 Grant
- BMP Education
- Infiltration basin
- Stabilize 2,200 feet of the Main Stem of Valley Creek on two properties

Challenges:

- Severely incised/widened channel
- Lack of LWD
- Sand bed and banks
- Poor vegetation
- "Active" landowner

Downstream Stabilization Project

Options Considered:

- 1) Excavate new, lower floodplain
- 2) Construct new channel (preferred option)
- 3) Raise bed of existing channel
- 4) Combination of 1) and 3)

Option 4 Selected

Floodplain grading and grade control

- Excavate floodplain terraces
- Boulder riffles for grade control

Inclusion of Buffer

- Plant excavated terraces in native grasses
- Landowner Agreement: buy-in difficult
- 5-year exclusion

Final Design

- Excavate floodplain terraces
- Eight Boulder riffles for grade control
- 45 root wads installed
- 7,000 feet of biolog
- Native grass, willow stakes and shrubs

Construction - Fall 2008

Highway Contractor Chosen...

Snowmelt Event Feb. 2009

Bank vegetation not yet established....

CSAH 18 Bridge Replacement

- MnDNR Habitat improvement project to mitigate wetland loss
- Narrowed channel width beneath bridge using lunker structures
- Root wads provide for stable banks and fish habitat
- Boulder riffle grade control

Fish and Macroinvertebrate Sampling Performed

- Site I located upstream of CSAH 18 bridge, downstream of VBWD project
- Site II (control site) located upstream at Stagecoach Road
- Both sites also sampled by MnDNR in 2006

Valley Creek Aquatic Macroinvertebrate - Percent EPT

Lessons Learned:

- 1-D Model may be inadequate for determining design velocities
- Artificial structures poor (but hopefully temporary) substitute for large woody debris
- Projects on private property risky (obtain landowner agreement early)
- Need to manage expectations of client
- Monitoring critical to evaluate project

Questions?

